<> Grant Stories | Washington Research Foundation
Washington Research Foundation | WRF Capital

Supporting Innovative Research

We are proud of the world-class educators and researchers we have supported through our grant programs. The following are examples of some of the people and projects we have funded.

Legends and HEORs

In June 2020, Will Canestaro, Ph.D., received a University of Washington School of Pharmacy (UWSOP) Early Career Achievement Award and was named an Alumni Legend. This closely followed his 2019 Health Innovation Northwest Seattle Health Innovators and Puget Sound Business Journal 40 Under 40 awards.

Canestaro, who joined Washington Research Foundation (WRF) in 2016, was honored by UWSOP during its 125-year anniversary celebration as being among the “alumni legends who [have] made significant contributions” to the profession. He earned his doctorate in pharmaceutical outcomes research and policy from the school in 2017.

"Will’s entrepreneurial vision has had a national impact, and he has been a steadfast supporter of the UW School of Pharmacy. I can’t think of a more deserving recipient of this inaugural award," said Sean Sullivan, Ph.D., dean of UWSOP.

Read more

Dr. William J. Canestaro

Dr. William J. Canestaro

Photo by Holle Tubbs

Simultaneous Multiple Interaction T-Cell Engagers (SMITEs)

In September 2019, WRF pledged over $1.5 million in additional support for a novel immunotherapy platform being developed in Dr. Jim Olson's lab at Fred Hutchinson Cancer Research Center (Fred Hutch).

The Olson lab's Simultaneous Multiple Interaction T-Cell Engagers (SMITEs) technology offers a new approach for harnessing the patient's immune system to more specifically target cancerous cells. Possible benefits may include increased survival rates for cancer patients while avoiding many of the side effects of currently available treatments. The SMITEs platform is designed to potentially enable this goal by simultaneously administering two molecules that aid the immune system in responding to cancer cells expressing two targeted antigens, while ignoring healthy cells expressing one or none.

Although bispecific T-cell engagers (BiTEs) are already used to treat leukemias, Fred Hutch researchers hope that the added specificity of the SMITEs platform will provide effective treatment of patients with solid tumors. This would provide a breakthrough for the majority of cancer patients whose immunotherapy options are currently limited.

"The success of many forms of immunotherapy depends on a target that truly distinguishes cancer from normal tissue—and there are very few of those. We acknowledge this inconvenient truth and developed a platform of 'smart molecules' that distinguish cancer from normal tissue using more than one cancer target,” said Olson.

WRF previously supported the SMITEs project with a technology-development grant of $400,000. Additional funding of $2.3 million has come from outside sources including the National Institutes of Health, Children’s Oncology Group Foundation and the Harry W. Bass, Jr. Foundation.

Beth Etscheid, Ph.D., director of grant programs at WRF, said, “Jim Olson and Fred Hutch are carrying out exactly the type of work where we think our grants can have the most impact—those that focus on bold solutions to major problems, especially in the life sciences. Jim and his team are determined to improve cancer treatments and have made impressive progress in each phase of this project. It's ambitious, but Jim is a proven innovator.”

WRF's additional funding will help Olson develop the SMITEs platform by initially enabling the construction and non-clinical testing of BiTE pairs.

“The WRF partnership has enabled our team to build a pipeline of immunotherapy candidates. WRF understands that the best way to help cancer patients is to develop therapeutic candidates that require a commercialization process," said Olson.

WRF managing director Will Canestaro, Ph.D., said, “We are excited for this technology's potential to improve the outcomes of cancer patients. Additionally, as a foundation focused on commercialization, we believe this team's work has the potential to create another high-growth biotech company here in Seattle.”

Fred Hutch

Counter Bias Training Simulation (CBTsim)

Biases permeate everyday life. They lead to assumptions about an individual's interests and abilities, and to inequality in social, education and employment opportunities. They can also have split-second life-and-death consequences.

At Washington State University (WSU), Lois James, Ph.D., is investigating the role that implicit bias plays in police decision making. Reliable information is not readily available on the number and circumstances of officer-involved shootings in the U.S., but the public perception in many areas is that black suspects are shot at disproportionately higher rates than other races. James, an assistant professor at WSU's School of Nursing, decided to test this theory.

Read more

Dr. Lois James

Dr. Lois James

Photo by Cori Kogan


C-SATS (Crowd-Sourced Assessment of Technical Skills) spun out of the University of Washington in 2014 to provide evaluation and training for surgeons, shortly after receiving a $50,000 grant from WRF to help commercialize the technology. Derek Streat, CEO and co-founder of C-SATS, described WRF's grant as a "catalyzing moment" in the company's formation.

The company’s cloud-based system works in one of two ways: C-SATS can record surgical procedures and upload them to its platform for analysis by paid experts, or clinicians can upload their own recordings for the same purpose. All videos comply with patient confidentiality requirements.

The anonymous evaluation of surgical techniques helps to provide objective coaching for surgeons, improving patient safety and outcomes. Detailed feedback is given within a few hours, allowing quick identification of areas for improvement without the unintentional bias that can influence reviews conducted by colleagues. Clinicians being evaluated with the C-SATS technology can earn continuing-education credits without taking time out of the operating room.

Seattle Children’s, UW Medicine and Providence Health & Services are among the many top-level healthcare providers in the U.S. who are benefiting from the C-SATS technology.

WRF Capital was an early investor in the company, which was acquired by Johnson & Johnson in April 2018. Proceeds enable WRF to make additional investments in local startups and support the Foundation's grant programs.


Hemostatic Polymers for Trauma Care

Drs. Suzie Pun and Nathan White are developing a medical polymer at the University of Washington with the potential to save hundreds of thousands of lives around the world each year.

Hemorrhagic shock from blood loss is one of the leading causes of death in people under the age of 45, often resulting from trauma incurred in accidents and on the battlefield. Prompt treatment can significantly improve the chance of survival, but current options are limited.

Pun, a professor of bioengineering, and White, an associate professor of emergency medicine, are creating a treatment to prevent hemorrhagic shock. PolySTAT, an easy-to-carry polymer, can be injected to affect internal wounds or applied directly to external wounds to help stanch blood flow. PolySTAT is effective within seconds of application and can mean the difference between a patient dying through exsanguination (“bleeding out”) or surviving long enough to receive appropriate medical treatment.

Following their success with small animal trials, Pun and White are using a $50,000 grant from WRF to scale up production of PolySTAT for testing in large animals. Their goal is for PolySTAT to be saving human lives within a decade.

Suzie Pun and Nathan White

Bob Lamm, Dr. Nathan White and Dr. Suzie Pun

Protein Engineering to Enhance Drug Loading of Antibody Drug Conjugates

At Washington State University (WSU), Dr. Kevin Gray and his colleagues in the integrative physiology and neuroscience department are developing a revolutionary cancer treatment.

Chemotherapy drugs cannot target specific cells, so even when successful, treatment also kills healthy cells. This often leads to serious, sometimes fatal, side effects.

Antibody-drug conjugates (ADCs) work by binding chemotherapy drugs to cancer-targeting antibodies produced by the patient. These antibodies then home in on cancer cells, leaving healthy cells alone. However, current ADCs can only utilize a single, relatively low-dose drug, risking poor efficacy and resistance by cancerous cells.

Gray’s team is developing the world’s first multifunctional ADC. Their unique engineering of the proteins involved in the delivery of the drugs allows higher and more diverse doses to be used, increasing the effectiveness of the treatment and expanding the types of cancer that can be treated with ADCs.

WRF provided a $50,000 grant to allow Gray and his colleagues to scale up development and testing of their technique. With help from WSU Innovation Corps, Gray, Dr. Afshin Khan and Alexander Brown formed a company, Chimeric Designs, to enable the treatment to reach the public when it is ready.

Dr. Afshin Khan and Dr. Kevin Gray

Dr. Afshin Khan and Dr. Kevin Gray

Nile Wilson: WRF Innovation Graduate Fellow and ARCS Fellow

Nile Wilson is a fourth-year doctoral student in the University of Washington’s (UW) bioengineering department, co-advised by Dr. Rajesh Rao in computer science and engineering, and Dr. Jeffrey Ojemann in neurosurgery. Wilson’s primary interest is neuroengineering, specifically in systems that allow communication between the human brain and technology for therapeutic and assistive purposes. Such systems have the potential to greatly impact the lives of people with various sensorimotor neural conditions, including epilepsy and spinal cord injuries.

Wilson’s research aims to improve mobility, independence and quality of life for individuals with sensorimotor disabilities through developing more effective Brain-Computer Interfaces, based on improving our understanding of the human brain and building better decoder algorithms as a result.

An ARCS Fellowship funded by WRF helped to bring Wilson to UW for graduate school after she completed her bachelor’s in biomedical engineering at the University of Virginia. A later WRF Innovation Graduate Fellowship has helped her meet the financial demands of gaining her doctorate.

Wilson devotes her remaining time to mentoring other students and engaging with the public through outreach events hosted by UW, The Center for Sensorimotor Neural Engineering and Pacific Science Center.

Nile Wilson

Nile Wilson

Photo provided by Nile Wilson

Bing Brunton: WRF Innovation Assistant Professor

Bing Brunton is the WRF Innovation Assistant Professor at the University of Washington’s Institute for Neuroengineering (UWIN). She is jointly appointed by UW’s biology department.

Brunton’s research focuses on the intersection of neuroscience and data science—primarily, the ways in which computer models can be used to analyze how large networks of neurons and the electrical signals they use to communicate can give rise to sensation, action, decisions and emotions. Brunton takes vast quantities of data from human and animal brain activity and analyzes it for coherent patterns, looking for correspondences between these patterns and behavior. From this, she builds mathematical models to understand brain function and aims to develop programmatic approaches to intervene during brain dysfunction.

Following her bachelor’s degree in biology from Caltech, Brunton completed her Ph.D. at Princeton. UWIN was able to hire Brunton as part of a $7.19 million grant pledged by WRF in 2014, allowing Brunton to make the transition from postdoctoral researcher to faculty and set up a research group in the process.

Brunton was awarded a Sloan Fellowship, which honors “early-career scientists whose achievements and potential identify them as rising stars,” in 2016.

Bing Brunton

Dr. Bing Brunton

UW Medicine's Heart Regeneration Program

Heart disease is the leading cause of death for men and women in the United States, and Dr. Charles Murry and his team at UW Medicine are committed to changing this within 10 years.

Murry is the co-director of the Institute for Stem Cell and Regenerative Medicine (ISCRM). ISCRM’s Heart Regeneration Program develops stem cell therapies for heart disease, focusing on regenerating heart tissue in patients at risk of congestive heart failure following a heart attack. The tissue damage caused by heart attacks is usually permanent and vastly increases a patient’s risk of future problems.

The Heart Regeneration Program has repaired hearts in animal models by implanting healthy cardiac muscle cells into the damaged heart.

In October 2015, WRF pledged $10 million to Dr. Murry and his colleagues to develop a method of growing healthy cardiac muscle that can be implanted into patients soon after they suffer a heart attack. The hope is to begin testing this novel heart regeneration method in clinical trials by the end of the five-year grant.

Chuck Murry

Dr. Charles Murry

Photo by Claire McClean/UW Medicine

Erin dela Cruz: ARCS Fellow

Erin dela Cruz is an ARCS Fellow in the University of Washington’s Molecular & Cellular Biology Ph.D. program, which partners UW with local organizations Fred Hutch, Institute for Systems Biology and the Center for Infectious Disease Research.

Dela Cruz’s research focuses on the role of vaginal lactobacilli in the development of bacterial vaginosis (BV). BV is a condition that most commonly affects women of reproductive age and can cause premature birth and additional complications if developed during pregnancy. BV also increases the risk of catching or transmitting other STDs, including HIV.

Dela Cruz’s findings come from analyzing large data sets derived from patient studies, drawing from the background in applied mathematics and public health she gained at UC Berkeley during her bachelor’s program. The ARCS Fellowship, funded by WRF, was an important factor in her decision to attend UW and has alleviated some of the financial distractions students often face.

Upon completing her Ph.D., dela Cruz plans to pursue her M.D., become a pediatric infectious disease physician and continue research in the field of host-microbe interactions.

Erin dela Cruz

Erin dela Cruz

Photo by Kristin Zwiers

Edmond H. Fischer-WRF Endowed Chair in Biochemistry

Dr. Edmond Fischer has ties to the University of Washington (UW) going back over 60 years. While conducting research at UW in the 1950s, Dr. Fischer met and collaborated with Dr. Edwin Krebs in the biochemistry department. The two discovered reversible protein phosphorylation, a key process in regulating proteins and one that is important for many cancer therapies. Drs. Fischer and Krebs were awarded the Nobel Prize for Physiology or Medicine in 1992 for this discovery.

UW Professor Emeritus of Biochemistry Dr. Earl W. Davie and his colleague Dr. Ko Kurachi provided one of WRF’s earliest licensing successes through their discovery and patent “rDNA Preparation of Christmas Factor and Use of DNA Sequences (Factor IX).” Dr. Davie approached WRF in 2011 to suggest establishing the Edmond H. Fischer-Washington Research Foundation Endowed Chair in Biochemistry at UW to recognize Dr. Fischer’s contributions to science. The chair was announced in 2012 to enable the department to recruit an expert to work with UW Medicine and the university’s new Institute for Protein Design to better understand mammalian biochemistry and create proteins that target a variety of diseases.

The chair was the second for UW’s biochemistry department. The Earl W. Davie-ZymoGenetics Endowed Chair in Biochemistry was established in 1993 to honor Dr. Davie’s many achievements, including his role in co-founding ZymoGenetics in 1981. The Davie-ZymoGenetics chair was made possible in large part by the campaigning efforts of Tom Cable, an early investor in ZymoGenetics and co-founder of Washington Research Foundation.

Edmond Fischer

Dr. Edmond Fischer, Ronald Howell and Dr. Earl Davie

Photo by David Wentworth Photography

Studying Metabolites to Advance Health Sciences

Metabolomics concentrates on developing a deep understanding of metabolism by identifying and characterizing many hundreds of small molecules or metabolites within biological systems. It is a relatively new field of study that the University of Washington has targeted as a strategic area of research with significant potential for better fundamental understanding of disease and health, as well as for the translation of new technologies to the clinic.

Dr. Daniel Raftery is an internationally renowned expert in metabolomics, with an emphasis on developing new diagnostics for breast, colon and esophageal cancers, plus new methods of analyzing metabolites in complex biological systems.

A WRF Faculty Recruitment Award of $500,000 has helped bring Dr. Raftery to the UW, where he heads the Northwest Metabolomics Research Center and holds professorships in the Anesthesiology & Pain Medicine and Chemistry Departments. He is also a full member at the Fred Hutchinson Cancer Research Center and previously a professor of chemistry at Purdue University. The grant will provide equipment and staff support for Dr. Raftery’s lab and will assist him in solidifying the program that will help ensure that the UW is at the forefront of world-class metabolomics research.

Daniel Raftery

Dr. Daniel Raftery

Improving Flow-stabilized Light Sources

In the University of Washington's Aeronautics and Astronautics Department, Drs. Uri Shumlak and Brian Nelson are working on the next generation of flow-stabilized light sources for use in extreme ultraviolet lithography (EUV) for the semiconductor industry.

EUV has vast potential in areas including the manufacturing of computer chips. The primary challenges are that current EUV light sources are technologically limited to short bursts and can overload power supplies when run at levels appropriate for high-volume state-of-the-art manufacturing.

Drs. Shumlak and Nelson have developed a new EUV technology that will operate effectively with existing power supplies. A grant of $50,000 from WRF is being used to help them build a functioning prototype of their Flow Z EUV Light Source technology. By enabling the emission of EUV light for significantly longer periods of time, higher output power levels can be achieved and will bridge the gap between the limitations of presently available technology and the requirements to take semiconductor manufacturing to the next level.

Dr. Uri Shumlak and Dr. Brian Nelson

Dr. Uri Shumlak and Dr. Brian Nelson

Bridget Bertoni: ARCS Fellow

Bridget Bertoni is a graduate student in physics working with Professors Ann Nelson and Sanjay Reddy at the University of Washington. The group is studying a model for dark matter in an attempt to understand more about its properties.

A satisfactory description of dark matter has not yet been offered by scientists, despite observations of its effects dating back to the 1930s. Better understanding of these properties will lead to greater insight into the history and detailed particle content of the universe, where it accounts for nearly a quarter of its total energy density.

Ms. Bertoni received her bachelor's degree in physics and mathematics from the University of Pittsburgh. An ARCS Fellowship, funded by Washington Research Foundation, was a strong factor in her decision to pursue a doctorate in theoretical physics at the UW. The opportunity to work with such a distinguished group of scientists, coupled with the financial help offered by ARCS, has greatly energized her work and allowed her to concentrate full time on her studies.

Bridget Bertoni

Bridget Bertoni